Catheter position prediction using deep-learning-based multi-atlas registration for high-dose rate prostate brachytherapy.

Published on Sep 18, 2021in Medical Physics4.071
· DOI :10.1002/MP.15206
Xiaofeng Yang29
Estimated H-index: 29
(Emory University)
Purpose null High-dose-rate (HDR) prostate brachytherapy involves treatment catheter placement, which is currently empirical and physician dependent. The lack of proper catheter placement guidance during the procedure has left the physicians to rely on a heuristic thinking-while-doing technique, which may cause large catheter placement variation and increased plan quality uncertainty. Therefore, the achievable dose distribution could not be quantified prior to the catheter placement. To overcome this challenge, we proposed a learning-based method to provide HDR catheter placement guidance for prostate cancer patients undergoing HDR brachytherapy. null Methods null The proposed framework consists of deformable registration via registration network (Reg-Net), multi-atlas ranking, and catheter regression. To model the global spatial relationship among multiple organs, binary masks of the prostate and organs-at-risk are transformed into distance maps, which describe the distance of each local voxel to the organ surfaces. For a new patient, the generated distance map is used as fixed image. Reg-Net is utilized to deformably register the distance maps from multi-atlas set to match this patient's distance map and then bring catheter maps from multi-atlas to this patient via spatial transformation. Several criteria, namely prostate volume similarity, multi-organ semantic image similarity, and catheter position criteria (far from the urethra and within the partial prostate), are used for multi-atlas ranking. The top-ranked atlas' deformed catheter positions are selected as the predicted catheter positions for this patient. Finally, catheter regression is used to refine the final catheter positions. A retrospective study on 90 patients with a fivefold cross-validation scheme was used to evaluate the proposed method's feasibility. In order to investigate the impact of plan quality from the predicted catheter pattern, we optimized the source dwell position and time for both the clinical catheter pattern and predicted catheter pattern with the same optimization settings. Comparisons of clinically relevant dose volume histogram (DVH) metrics were completed. null Results null For all patients, on average, both the clinical plan dose and predicted plan dose meet the common dose constraints when prostate dose coverage is kept at V100 = 95%. The plans from the predicted catheter pattern have slightly higher hotspot in terms of V150 by 5.0% and V200 by 2.9% on average. For bladder V75, rectum V75, and urethra V125, the average difference is close to zero, and the range of most patients is within ±1 cc. null Conclusion null We developed a new catheter placement prediction method for HDR prostate brachytherapy based on a deep-learning-based multi-atlas registration algorithm. It has great clinical potential since it can provide catheter location estimation prior to catheter placement, which could reduce the dependence on physicians' experience in catheter implantation and improve the quality of prostate HDR treatment plans. This approach merits further clinical evaluation and validation as a method of quality control for HDR prostate brachytherapy.
📖 Papers frequently viewed together
10 Authors (Xiaofeng Yang)
7 Authors (Xiaofeng Yang)
5 Authors (Ryan L. Smith, ..., Rick Franich)
The delineation of the prostate and organs-at-risk (OARs) is fundamental to prostate radiation treatment planning, but is currently labor-intensive and observer-dependent. We aimed to develop an automated computed tomography (CT)-based multi-organ (bladder, prostate, rectum, left and right femoral heads) segmentation method for prostate radiation therapy treatment planning. The proposed method uses synthetic MRIs (sMRIs) to offer superior soft-tissue information for male pelvic CT images. Cycle-...
#8Xiaofeng Yang (Emory University)H-Index: 29
BACKGROUND AND PURPOSE Radiotherapeutic dose escalation to dominant intraprostatic lesions (DIL) in prostate cancer could potentially improve tumor control. The purpose of this study was to develop a method to accurately register multiparametric magnetic resonance imaging (MRI) with CBCT images for improved DIL delineation, treatment planning, and dose monitoring in prostate radiotherapy. METHODS AND MATERIALS We proposed a novel registration framework which considers biomechanical constraint wh...
Abstract A non-rigid MR-TRUS image registration framework is proposed for prostate interventions. The registration framework consists of a convolutional neural networks (CNN) for MR prostate segmentation, a CNN for TRUS prostate segmentation and a point-cloud based network for rapid 3D point cloud matching. Volumetric prostate point clouds were generated from the segmented prostate masks using tetrahedron meshing. The point cloud matching network was trained using deformation field that was gene...
#2Yang Lei (Emory University)H-Index: 8
#6Xiaofeng Yang (Emory University)H-Index: 29
This paper presents a review of deep learning (DL) based medical image registration methods. We summarized the latest developments and applications of DL-based registration methods in the medical field. These methods were classified into seven categories according to their methods, functions and popularity. A detailed review of each category was presented, highlighting important contributions and identifying specific challenges. A short assessment was presented following the detailed review of e...
PURPOSE: Registration and fusion of magnetic resonance imaging (MRI) and transrectal ultrasound (TRUS) of prostate can provide guidance for prostate brachytherapy. However, accurate registration remains a challenging task due to the lack of ground-truth regarding voxel-level spatial correspondence, limited field of view, low contrast-to-noise ratio in TRUS. In this study, we proposed a weakly supervised deep learning approach to address these issues. METHODS: We employed deep learning techniques...
Deformable image registration (DIR) of 4D-CT images is important in multiple radiation therapy applications including motion tracking of soft tissue or fiducial markers, target definition, image fusion, dose accumulation and treatment response evaluations. It is very challenging to accurately and quickly register 4D-CT abdominal images due to its large appearance variances and bulky sizes. In this study, we proposed an accurate and fast multi-scale DIR network (MS-DIRNet) for abdominal 4D-CT reg...
#8Xiaofeng Yang (Emory University)H-Index: 29
PURPOSE: To develop an accurate and fast deformable image registration (DIR) method for four-dimensional computed tomography (4D-CT) lung images. Deep learning-based methods have the potential to quickly predict the deformation vector field (DVF) in a few forward predictions. We have developed an unsupervised deep learning method for 4D-CT lung DIR with excellent performances in terms of registration accuracies, robustness, and computational speed. METHODS: A fast and accurate 4D-CT lung DIR met...
PURPOSE: Accurate segmentation of the prostate on computed tomography (CT) for treatment planning is challenging due to CT's poor soft tissue contrast. Magnetic resonance imaging (MRI) has been used to aid prostate delineation, but its final accuracy is limited by MRI-CT registration errors. We developed a deep attention-based segmentation strategy on CT-based synthetic MRI (sMRI) to deal with the CT prostate delineation challenge without MRI acquisition. METHODS AND MATERIALS: We developed a pr...
Objectives:The purpose of this study is to investigate the dosimetric effect and clinical impact of delivering a focal radiotherapy boost dose to multiparametric MRI (mp-MRI)-defined dominant intra...
The goal of this work is to segment the objects in an image that are referred to by a sequence of linguistic descriptions (referring expressions). We propose a deep neural network with recurrent layers that output a sequence of binary masks, one for each referring expression provided by the user. The recurrent layers in the architecture allow the model to condition each predicted mask on the previous ones, from a spatial perspective within the same image. Our multimodal approach uses off-the-she...
Cited By0
This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.