On effect of rhenium on mechanical properties of a high-Cr creep-resistant steel

Published on Feb 1, 2019in Materials Letters3.204
· DOI :10.1016/J.MATLET.2018.10.081
Alexandra Fedoseeva10
Estimated H-index: 10
,
I. Nikitin5
Estimated H-index: 5
+ 1 AuthorsRustam Kaibyshev58
Estimated H-index: 58
Source
Abstract
Abstract 9–12%Cr martensitic steels are perspective materials for critical components of new high-efficiency power plants working at ultra-supercritical parameters of steam. Addition of 0.2% rhenium in the experimental steel improved the short-term creep strength at 650 °C. Comparison of kinetics of tungsten depletion from the matrix in different high-Cr martensitic steels showed that rhenium in the experimental 10Cr-3Co-3W-0.2Re steel did not lead to retaining an increased amount of solute W in the ferritic matrix during both aging and creep at 650 °C. At the same time, the precipitation of the high fraction of the fine Laves phase particles provided the effective particle strengthening.
📖 Papers frequently viewed together
25 Citations
7 Citations
44 Citations
References12
Newest
#1R. Mishnev (Belgorod State University)H-Index: 10
#2Nadezhda Dudova (Belgorod State University)H-Index: 13
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 3 authors...
Abstract A low-nitrogen 10% Cr martensitic steel containing 3% Co and 0.008% B was shown to exhibit an extremely long creep rupture time of ∼4·104 h under an applied stress of 120 MPa at 650 °C. The creep behavior and evolution of lath martensite structure and precipitates during creep at these conditions were studied. The main feature of the microstructure under long-term creep is retention of the lath structure until rupture. The following microstructural factors affecting the superior creep r...
19 CitationsSource
#1Alexandra FedoseevaH-Index: 10
#2Nadezhda DudovaH-Index: 13
Last. Andrey BelyakovH-Index: 41
view all 4 authors...
The effect of increasing tungsten content from 2 to 3 wt % on the creep rupture strength of a 3 wt % Co-modified P92-type steel was studied. Creep tests were carried out at a temperature of 650 °C under applied stresses ranging from 100 to 220 MPa with a step of 20 MPa. It was found that an increase in W content from 2 to 3 wt % resulted in a +15% and +14% increase in the creep rupture strength in the short-term region (up to 103 h) and long-term one (up to 104 h), respectively. On the other han...
17 CitationsSource
#1Alexandra Fedoseeva (Belgorod State University)H-Index: 10
#2Nadezhda Dudova (Belgorod State University)H-Index: 13
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 3 authors...
Microstructure evolution under long-term aging and creep was studied in a 9wt%Cr–3wt%Co–3wt%W martensitic steel at a temperature of 650 °C and stress ranging from 100 to 220 MPa with a step of 20 MPa. This steel exhibited creep strength breakdown at an applied stress of 160 MPa and a rupture time of 1703 h. However, this creep strength breakdown did not coincide with the transition from short-term creep conditions to long-term creep, because deviation from the Monkman–Grant relationship occurs a...
26 CitationsSource
#1Tadashi TanumaH-Index: 1
Advances in Steam Turbines for Modern Power Plants provides an authoritative review of steam turbine design optimization, analysis and measurement, the development of steam turbine blades, and other critical components, including turbine retrofitting and steam turbines for renewable power plants. As a very large proportion of the world's electricity is currently generated in systems driven by steam turbines, (and will most likely remain the case in the future) with steam turbines operating in fo...
13 Citations
#1R. Mishnev (Belgorod State University)H-Index: 10
#2Nadezhda Dudova (Belgorod State University)H-Index: 13
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 4 authors...
Abstract The microstructural evolution and the dispersion of secondary phases were studied in a low-nitrogen 10%Cr martensitic steel with 3% Co and 0.008% B additives at 650 °C under an applied stress of 140 MPa. It was demonstrated that the superior creep strength of this steel can be attributed to the high resistance of M 23 C 6 -type carbides and Nb-rich MX carbonitrides against coarsening, resulting in a stable of the tempered martensite lath structure (TMLS) under short-term creep condition...
26 CitationsSource
#1Rustam Kaibyshev (Belgorod State University)H-Index: 58
#2R. Mishnev (Belgorod State University)H-Index: 10
Last. Nadezhda Dudova (Belgorod State University)H-Index: 13
view all 4 authors...
Tempered martensite lath structure (TMLS) plays a vital role in creep resistance of high chromium martensitic steels. Under creep conditions the TMLS could be stabilized by three agents: (i) a dispersion of boundary M23C6 carbides and Laves phase; (ii) a dispersion of M(C,N) carbonitrides, which are homogeneously distributed within ferritic matrix; (iii) substitutional alloying element within ferritic matrix. The boundary particles exert a large Zener drag force which effectively hinders migrati...
9 CitationsSource
#1R. Mishnev (Belgorod State University)H-Index: 10
#2Nadezhda Dudova (Belgorod State University)H-Index: 13
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 3 authors...
Abstract Low cycle fatigue (LCF) behavior of a 10% Cr–2% W–0.7% Mo–3% Co–NbV steel with 0.008 wt.% B and 0.003 wt.% N additions was studied under fully reversed tension–compression loading as a function of temperature from 20 to 650 °С and constant strain amplitude from ±0.2% to ±1.0%. The effect of LCF on the steel’s microstructure was analyzed. It was demonstrated that the 10% Cr steel was susceptible to cyclic softening, even at room temperature, and could not withstand reversed plasticity. T...
24 CitationsSource
#1Nadezhda Dudova (Belgorod State University)H-Index: 13
#2R. Mishnev (Belgorod State University)H-Index: 10
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 3 authors...
The effect of heat treatment on the microstructure and the mechanical properties of a 10%Cr steel with 0.008% boron was examined. The microstructure and the mechanical properties of this steel subjected to the normalizing were studied after tempering under different conditions. The layers of retained austenite are located along the lath boundaries. The formation of M23(B·C)6 phase having film-like shape takes place on interface boundaries of retained austenite/martensite during tempering at 525°...
35 CitationsSource
#1Geoffrey W. Meetham (Rolls-Royce Motor Cars)H-Index: 1
#2MH Van de Voorde (TU Delft: Delft University of Technology)H-Index: 1
Last. L Mishnaevsky (University of Stuttgart)H-Index: 1
view all 3 authors...
1 Introduction.- 1.1 Need for High Temperature Materials.- 1.2 High Temperature Materials.- 1.3 Historical Development of High Temperature Materials ...- 2 Design and Manufacture.- 2.1 Plant Design and Material Selection.- 2.2 Component Manufacture.- 2.3 Process Models.- 2.4 Component Life Extension.- 3 Requirements of High Temperature Materials.- 3.1 Environmental Resistance.- 3.1.1 Oxidation.- 3.1.2 Sulphidation.- 3.1.3 Salt- and Ash-Deposit Corrosion.- 3.1.4 Carburisation.- 3.2 Erosion.- 3.3 ...
63 Citations
#1Fujio AbeH-Index: 52
#2Torsten-Ulf KernH-Index: 1
Last. Ramaswamy ViswanathanH-Index: 4
view all 3 authors...
Part 1 General: Introduction The development of creep-resistant steels Specifications for creep-resistant steels: Europe Specifications for creep-resistant steels Production of creep-resistant steels for turbines. Part 2 Behaviour of creep-resistant steels: Physical and elastic behaviour of creep-resistant steels Diffusion behaviour of creep-resistant steels Fundamental aspects of creep deformation and deformation mechanism map Strengthening mechanisms in steel for creep and creep rupture Precip...
190 CitationsSource
Cited By8
Newest
Source
Abstract The coarsening of Laves phase in a Re-containing 10% Cr-3% Co-3% W steel during both creep and ageing at 923 K was investigated. The depletion of W solutes from the ferrite matrix is accompanied with the precipitation of Laves phase, wherein creep strain accelerates both these processes. The equilibrium W content in the ferritic matrix of 1.24 wt% and the volume fraction of Laves phase of 1.6% is reached after 500 h of creep and 1000 h of ageing. This is related to lower activation ener...
1 CitationsSource
#1Alexandra FedoseevaH-Index: 10
#2Ivan NikitinH-Index: 2
Last. Rustam KaibyshevH-Index: 58
view all 4 authors...
Source
#1Alexandra FedoseevaH-Index: 10
#2Ivan NikitinH-Index: 2
Last. Rustam KaibyshevH-Index: 58
view all 6 authors...
3 CitationsSource
#1Alexandra FedoseevaH-Index: 10
#2I. NikitinH-Index: 5
Last. Rustam KaibyshevH-Index: 58
view all 4 authors...
Abstract The nucleation of the Laves phase particles in a Re-containing 10% wt. Cr-3% Co-3% W steel with a low nitrogen and a high boron contents during creep is characterized by distinctive features. The precipitation process can be written as M23C6 carbide → M6C carbide → Laves phase. The nucleation of all phases in this precipitation sequence is heterogeneous. The M23C6 carbides precipitate on the boundaries of martensitic structure during tempering at temperature of 770 °C. The M6C (Fe3W3C) ...
5 CitationsSource
#1Alexandra FedoseevaH-Index: 10
#2I. NikitinH-Index: 5
Last. Rustam KaibyshevH-Index: 58
view all 4 authors...
Abstract Re-containing 10Cr-3Co-3W martensitic steel with low nitrogen and high boron contents exhibited a rupture time of 10,987 h at 650°C/140 MPa. This superior creep resistance was caused by partially saved tempered martensite lath structure due to precipitation of M23C6 carbides and Laves phase chains on lath boundaries as well as their high resistance to coarsening. M23C6 carbides were characterized by decreased interfacial energy that resulted in the retention of the orientation relations...
5 CitationsSource
#1Lei Dai (CTGU: China Three Gorges University)H-Index: 2
#2Zhong Liu (CTGU: China Three Gorges University)H-Index: 1
Last. Zengmin Shi (CTGU: China Three Gorges University)H-Index: 4
view all 5 authors...
Abstract Fe–9Cr ODS alloys elaborated by mechanical milling (MM) and followed by hot isostatic pressing (HIP) and hot rolling (HR) have been studied using transmission electron microscopy (TEM) and atom probe tomography (APT) to understand their microstructural characterization. The as-HIP alloy exhibited equiaxed ferrite and contained nanoparticles and low density of dislocations. The as-HR alloy manifested elongated ferrite and contained nanoclusters and high density of dislocations. Character...
7 CitationsSource
#1J. Borisova (Belgorod State University)H-Index: 1
#2Valeriy Dudko (Belgorod State University)H-Index: 9
Last. Rustam Kaibyshev (Belgorod State University)H-Index: 58
view all 4 authors...
The impact toughness of a martensitic 12 Cr-0.6 Mo-2.2 W-4 Co-0.8 Cu-VNb (in wt pct) steel subjected to tempering at 770 °C for 3 hours and aging at 650 °C for 643 hours was examined in the temperature range of − 20 to 250 °C. The steel in the tempered condition exhibits a ductile-brittle transition temperature (DBTT) of 41 °C and a Charpy V-notch impact energy of 100 J/cm2 at a temperature of 20 °C. The tempered steel becomes completely brittle at 0 °C when the absorbed energy falls to 8 J/cm2....
2 CitationsSource