This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system

Volume: 61, Pages: 959 - 972
Published: Sep 12, 2017
Abstract
Fault detection and diagnosis (FDD) in chemical process systems is an important tool for effective process monitoring to ensure the safety of a process. Multi-scale classification offers various advantages for monitoring chemical processes generally driven by events in different time and frequency domains. However, there are issues when dealing with highly interrelated, complex, and noisy databases with large dimensionality. Therefore, a new...
Paper Details
Title
Fault diagnosis and classification framework using multi-scale classification based on kernel Fisher discriminant analysis for chemical process system
Published Date
Sep 12, 2017
Volume
61
Pages
959 - 972
TrendsPro
  • Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
  • Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.