Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice

Published on Jan 5, 2015in Toxicology Letters3.569
· DOI :10.1016/J.TOXLET.2014.09.022
Stéphane Mouret15
Estimated H-index: 15
,
Julien Wartelle5
Estimated H-index: 5
+ 8 AuthorsIsabelle Boudry9
Estimated H-index: 9
Sources
Abstract
Sulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose- and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1β and IL6), tumor necrosis factor (TNF)-α, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1α, MIP-2 and MIP-1αR) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-γ2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions. Language: en
📖 Papers frequently viewed together
47 Citations
65 Citations
66 Citations
References74
Newest
Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and...
11 CitationsSource
#1Anil K. Jain (University of Colorado Denver)H-Index: 22
#2Neera Tewari-Singh (University of Colorado Denver)H-Index: 17
Last. Rajesh Agarwal (University of Colorado Denver)H-Index: 104
view all 6 authors...
Abstract Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects ...
24 CitationsSource
#1Neera Tewari-Singh (UM: University of Montana)H-Index: 17
#2Anil K. Jain (UM: University of Montana)H-Index: 22
Last. Rajesh Agarwal (UM: University of Montana)H-Index: 104
view all 5 authors...
To identify effective therapies against sulfur mustard (SM)-induced skin injuries, various animals have been used to assess the cutaneous pathology and related histopathological changes of SM injuries. However, these efforts to establish relevant skin injury endpoints for efficacy studies have been limited mainly due to the restricted assess of SM. Therefore, we employed the SM analog nitrogen mustard (NM), a primary vesicating and bifunctional alkylating agent, to establish relevant endpoints f...
15 CitationsSource
#1Mohamed Batal (UJF: Joseph Fourier University)H-Index: 5
#2Isabelle BoudryH-Index: 9
Last. Thierry Douki (UJF: Joseph Fourier University)H-Index: 78
view all 9 authors...
Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM–DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6 h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after ...
26 CitationsSource
Abstract Lewisite is a potent chemical warfare arsenical vesicant that can cause severe skin lesions. Today, lewisite exposure remains possible during demilitarization of old ammunitions and as a result of deliberate use. Although its cutaneous toxicity is not fully elucidated, a specific antidote exists, the British anti-lewisite (BAL, dimercaprol) but it is not without untoward effects. Analogs of BAL, less toxic, have been developed such as meso -2,3-dimercaptosuccinic acid (DMSA) and have be...
11 CitationsSource
#1Swetha Inturi (UM: University of Montana)H-Index: 16
#2Neera Tewari-Singh (UM: University of Montana)H-Index: 17
Last. Rajesh Agarwal (UM: University of Montana)H-Index: 104
view all 6 authors...
Abstract Bifunctional alkylating agent sulfur mustard (SM) and its analog nitrogen mustard (NM) cause DNA damage leading to cell death, and potentially activating inflammation. Transcription factor p53 plays a critical role in DNA damage by regulating cell cycle progression and apoptosis. Earlier studies by our laboratory demonstrated phosphorylation of p53 at Ser15 and an increase in total p53 in epidermal cells both in vitro and in vivo following NM exposure. To elucidate the role of p53 in NM...
10 CitationsSource
#1Vinay Lomash (DRDE: Defence Research and Development Establishment)H-Index: 12
#2S.E. Jadhav (DRDE: Defence Research and Development Establishment)H-Index: 7
Last. S.C. Pant (DRDE: Defence Research and Development Establishment)H-Index: 21
view all 4 authors...
Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarker...
7 CitationsSource
#1Neera Tewari-Singh (UM: University of Montana)H-Index: 17
#2Anil K. Jain (UM: University of Montana)H-Index: 22
Last. Rajesh Agarwal (UM: University of Montana)H-Index: 104
view all 5 authors...
A paucity of clinically applicable biomarkers to screen therapies in laboratory is a limitation in the development of countermeasures against cutaneous injuries by chemical weapon, sulfur mustard (SM), and its analog nitrogen mustard (NM). Consequently, we assessed NM-caused progression of clinical cutaneous lesions; notably, skin injury with NM is comparable to SM. Exposure of SKH-1 hairless and C57BL/6 (haired) mice to NM (3.2 mg) for 12–120 h caused clinical sequelae of toxicity, including mi...
15 CitationsSource
#1Alla I. PotapovichH-Index: 23
#2Vladimir A. KostyukH-Index: 22
Last. Liudmila KorkinaH-Index: 24
view all 5 authors...
Background The understanding of the anti-inflammatory mechanisms of action of plant polyphenols (PPs) and clarification of the relationship between their anti-inflammatory and antioxidant properties may result in a new therapeutic approach to skin cancers.
29 CitationsSource
#1Yoke-Chen Chang (RU: Rutgers University)H-Index: 7
#2James D. Wang (RU: Rutgers University)H-Index: 2
Last. Donald R. Gerecke (RU: Rutgers University)H-Index: 18
view all 7 authors...
The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, sepa...
18 CitationsSource
Cited By19
Newest
#1Jeffrey D. Laskin (RU: Rutgers University)H-Index: 69
#2Gabriella Wahler (RU: Rutgers University)H-Index: 1
Last. Laurie B. Joseph (RU: Rutgers University)H-Index: 12
view all 7 authors...
Abstract Sulfur mustard (SM), a dermal vesicant that has been used in chemical warfare, causes inflammation, edema and epidermal erosions depending on the dose and time following exposure. Herein, a minipig model was used to characterize wound healing following dermal exposure to SM. Saturated SM vapor caps were placed on the dorsal flanks of 3-month-old male Gottingen minipigs for 30 min. After 48 h the control and SM wounded sites were debrided daily for 7 days with wet to wet saline gauze soa...
1 CitationsSource
#1Yoke Chen Chang (RU: Rutgers University)H-Index: 3
#2James D. Wang (RU: Rutgers University)H-Index: 2
Last. Donald R. Gerecke (RU: Rutgers University)H-Index: 18
view all 8 authors...
: Laminin-332 is a basement membrane protein composed of three genetically distinct polypeptide chains that actively promote both skin epidermal cell adhesion and migration. Proteolytic fragments of the laminin γ2 chain stimulate migration and scattering of keratinocytes and cancer cells. Sulfur mustard (SM) is a bifunctional alkylating agent that induces separation of basal keratinocytes from the dermal-epidermal junction and invokes a strong inflammatory response leading to delayed wound repai...
1 CitationsSource
#1Lilian dos Anjos Oliveira Ferreira (UEM: Universidade Estadual de Maringá)H-Index: 2
#2Cristina de Paula Barros de Melo (UEL: Universidade Estadual de Londrina)H-Index: 2
Last. Maria da Conceição Torrado Truiti (UEM: Universidade Estadual de Maringá)H-Index: 7
view all 7 authors...
Abstract Excessive exposure to UVB radiation can lead to oxidative and inflammatory damage that compromises the cutaneous integrity. The application on the skin of photochemoprotective products is considered a relevant approach for the prevention of oxidative damage. In this study the in vitro and in vivo photochemoprotective effects of antioxidant plant materials obtained from the leaves of Nectandra cuspidata Nees following UVB irradiation were evaluated. The cytoprotective effect, reactive ox...
6 CitationsSource
#1Ali Khamisabadi (University of Tabriz)H-Index: 2
#2Eisa Tahmasbpour (Pasteur Institute of Iran)H-Index: 11
Last. Alireza Shahriary (BMSU: Baqiyatallah University of Medical Sciences)H-Index: 9
view all 4 authors...
AbstractDysregulation of matrix metalloproteinases (MMPs) is now considered as one of the main toxicity effects of sulfur mustard (SM). Numerous studies have found overexpression of MMPs, but the m...
2 CitationsSource
#1Leila Etemad (MUMS: Mashhad University of Medical Sciences)H-Index: 10
#2Mohammad Moshiri (MUMS: Mashhad University of Medical Sciences)H-Index: 10
Last. Mahdi Balali-Mood (Birjand University of Medical Sciences)H-Index: 4
view all 3 authors...
AbstractSulfur mustard (SM) is a blistering chemical warfare agent that was used during the World War I and in the Iraq–Iran conflict. The aim of this paper is to discuss and critically review the ...
8 CitationsSource
#1Yoke Chen Chang (RU: Rutgers University)H-Index: 3
#2Melannie Soriano (RU: Rutgers University)H-Index: 1
Last. Donald R. Gerecke (RU: Rutgers University)H-Index: 18
view all 7 authors...
Abstract Sulfur mustard (2,2′-dichlorodiethyl sulfide, SM) is a chemical warfare agent that generates an inflammatory response in the skin and causes severe tissue damage and blistering. In earlier studies, we identified cutaneous damage induced by SM in mouse ear skin including edema, erythema, epidermal hyperplasia and microblistering. The present work was focused on determining if SM-induced injury was associated with alterations in mRNA and protein expression of specific cytokines and chemok...
6 CitationsSource
#1Laurie B. Joseph (RU: Rutgers University)H-Index: 12
#2Gabriella M. Composto (RU: Rutgers University)H-Index: 5
Last. Diane E. Heck (NYMC: New York Medical College)H-Index: 4
view all 13 authors...
Abstract Sulfur mustard (SM, bis(2-chloroethyl sulfide) is a potent vesicating agent known to cause skin inflammation, necrosis and blistering. Evidence suggests that inflammatory cells and mediators that they generate are important in the pathogenic responses to SM. In the present studies we investigated the role of mast cells in SM-induced skin injury using a murine vapor cup exposure model. Mast cells, identified by toluidine blue staining, were localized in the dermis, adjacent to dermal app...
9 CitationsSource
#1Dinesh G Goswami (UM: University of Montana)H-Index: 8
#2Rajesh Agarwal (UM: University of Montana)H-Index: 104
Last. Neera Tewari-Singh (UM: University of Montana)H-Index: 17
view all 3 authors...
Abstract Phosgene Oxime (CX, Cl 2 CNOH), a halogenated oxime, is a potent chemical weapon that causes immediate acute injury and systemic effects. CX, grouped together with vesicating agents, is an urticant or nettle agent with highly volatile, reactive, corrosive, and irritating vapor, and has considerably different chemical properties and toxicity compared to other vesicants. CX is absorbed quickly through clothing with faster cutaneous penetration compared to other vesicating agents causing i...
6 CitationsSource
#1Dorothee Rose (University of Lübeck)H-Index: 3
#2Annette M. SchmidtH-Index: 40
Last. Johannes Boltze (University of Lübeck)H-Index: 34
view all 6 authors...
Abstract Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to iden...
10 CitationsSource
Abstract Oxidative stress, DNA damage repair, and inflammation are three important reactions of sulfur mustard (SM) exposure. But molecular related chronological events in the earlier stage of SM exposure model are still unclear. In the research, reactive oxygen species (ROS) was measured by using flow cytometry. Cytokines were tested in Luminex method. Myeloperoxidase (MPO), inducible nitric oxide synthase (iNOS), 8-hydroxy-2-deoxyguanosine (8-OHdG) and glutathione (GSH) activity or levels in s...
14 CitationsSource