Seleksi Fitur Dengan Information Gain Untuk Meningkatkan Deteksi Serangan DDoS menggunakan Random Forest

Published on Feb 27, 2020in IEEE Transactions on Computers2.663
· DOI :10.33633/TC.V19I1.2860
Kurniabudi Kurniabudi4
Estimated H-index: 4
,
Abdul Harris , Abdul Rahim1
Estimated H-index: 1
Sources
Abstract
Tantangan deteksi serangan saat ini adalah jumlah trafik yang besar dan beragam serta hadir jenis serangan baru. Sehingga diperlukan teknik baru untuk meningkatkan performa deteksi. Dengan pesatnya perkembangan teknologi layanan komunikasi, menghasilkan trafik dengan informasi yang beragam. Pada dasarnya tidak semua informasi pada trafik jaringan digunakan untuk mendeteksi serangan seperti DDoS. Penelitian ini bertujuan meningkatkan performa Random Forest dalam mendeteksi serangan DDoS dengan seleksi fitur menggunakan teknik Information Gain. Berdasarkan hasil eksperimen diperoleh bahwa teknik yang diusulkan mampu meningkatkan akurasi deteksi DDoS hingga 99.99% dengan tingkat alarm palsu 0.001
References0
Newest
Cited By0
Newest
This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.