Search everything
Home
Research Intelligence
Expert Finder
Scinapse Trends
Paper Search
Journal Search
Collections
Favorites
History
Submit Feedback
doi.org/10.1002/adma.201902765
Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
Volker L. Deringer
49
,
A. Miguel
34
,
Gábor Cśanyi
68
View all 3 authors
Advanced Materials
26.80
Volume: 31, Issue: 46
Published
: Sep 5, 2019
702
Citations
Sources
Cite
Basic Info
Analytics
References
Citations
Paper Fields
Physics
Nanotechnology
Electrode
Work (physics)
Interatomic potential
Density functional theory
Computational chemistry
Nanoparticle
Chemistry
Materials science
Condensed matter physics
Scale (ratio)
Computer science
Molecular dynamics
Quantum mechanics
Electrochemistry
Supercapacitor
Atomic units
Electronic structure
Thermodynamics
Paper Details
Title
Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
DOI
doi.org/10.1002/adma.201902765
Published Date
Sep 5, 2019
Journal
Advanced Materials
Volume
31
Issue
46
Notes
History
View all history