This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control

Volume: 9, Issue: 4, Pages: 3259 - 3269
Published: Nov 16, 2016
Abstract
Direct load control of a heterogeneous cluster of residential demand flexibility sources is a high-dimensional control problem with partial observability. This paper proposes a novel approach that uses a convolutional neural network (CNN) to extract hidden state-time features to mitigate the curse of partial observability. More specific, a CNN is used as a function approximator to estimate the state-action value function or Q-function in the...
Paper Details
Title
Convolutional Neural Networks for Automatic State-Time Feature Extraction in Reinforcement Learning Applied to Residential Load Control
Published Date
Nov 16, 2016
Volume
9
Issue
4
Pages
3259 - 3269
TrendsPro
  • Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
  • Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.