This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network

Volume: 9, Issue: 1
Published: May 1, 2019
Abstract
Heart disease is a malignant threat to human health. Electrocardiogram (ECG) tests are used to help diagnose heart disease by recording the heart’s activity. However, automated medical-aided diagnosis with computers usually requires a large volume of labeled clinical data without patients' privacy to train the model, which is an empirical problem that still needs to be solved. To address this problem, we propose a generative adversarial network...
Paper Details
Title
Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network
Published Date
May 1, 2019
Volume
9
Issue
1
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.