This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

Quantifying the resilience of machine learning classifiers used for cyber security

Volume: 92, Pages: 419 - 429
Published: Sep 29, 2017
Abstract
The use of machine learning algorithms for cyber security purposes gives rise to questions of adversarial resilience, namely: Can we quantify the effort required of an adversary to manipulate a system that is based on machine learning techniques? Can the adversarial resilience of such systems be formally modeled and evaluated? Can we quantify this resilience such that different systems can be compared using empiric metrics? Past works have...
Paper Details
Title
Quantifying the resilience of machine learning classifiers used for cyber security
Published Date
Sep 29, 2017
Volume
92
Pages
419 - 429
TrendsPro
  • Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
  • Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.