This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

Wavelet Neural Network Prediction Method of Stock Price Trend Based on Rough Set Attribute Reduction

Volume: 62, Pages: 923 - 932
Published: Sep 30, 2017
Abstract
To improve the prediction capacity of stock price trend, an integrated prediction method is proposed based on Rough Set (RS) and Wavelet Neural Network (WNN). RS is firstly introduced to reduce the feature dimensions of stock price trend. On this basis, RS is used again to determine the structure of WNN, and to obtain the prediction model of stock price trend. Finally, the model is applied to prediction of stock price trend. The simulation...
Paper Details
Title
Wavelet Neural Network Prediction Method of Stock Price Trend Based on Rough Set Attribute Reduction
Published Date
Sep 30, 2017
Volume
62
Pages
923 - 932
TrendsPro
  • Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
  • Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.