Search everything
Home
Research Intelligence
Expert Finder
Scinapse Trends
Paper Search
Journal Search
Collections
Favorites
History
Submit Feedback
doi.org/10.1109/cvpr52688.2022.00423
ST++: Make Self-trainingWork Better for Semi-supervised Semantic Segmentation
Lihe Yang
7
,
Wei Zhuo
7
,
...,
Yang Gao
40
View all 5 authors
Published
: Jun 1, 2022
250
Citations
Sources
Cite
Basic Info
Analytics
References
Citations
Paper Fields
Pattern recognition (psychology)
Overfitting
Pipeline (software)
Gene
Machine learning
Leverage (statistics)
Artificial intelligence
Set (abstract data type)
Chemistry
Programming language
Code (set theory)
Computer science
Artificial neural network
Biochemistry
Robustness (evolution)
Segmentation
Paper Details
Title
ST++: Make Self-trainingWork Better for Semi-supervised Semantic Segmentation
DOI
doi.org/10.1109/cvpr52688.2022.00423
Published Date
Jun 1, 2022
Notes
History
View all history