This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

R-MSFM: Recurrent Multi-Scale Feature Modulation for Monocular Depth Estimating

Published: Oct 1, 2021
Abstract
In this paper, we propose Recurrent Multi-Scale Feature Modulation (R-MSFM), a new deep network architecture for self-supervised monocular depth estimation. R-MSFM extracts per-pixel features, builds a multi-scale feature modulation module, and iteratively updates an inverse depth through a parameter-shared decoder at the fixed resolution. This architecture enables our R-MSFM to maintain semantically richer while spatially more precise...
Paper Details
Title
R-MSFM: Recurrent Multi-Scale Feature Modulation for Monocular Depth Estimating
Published Date
Oct 1, 2021
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.