Original paper
Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix
Abstract
Multi-view subspace clustering aims at separating data points into multiple underlying subspaces according to their multi-view features. Existing low-rank tensor representation-based multi-view subspace clustering algorithms are robust to noise and can preserve the high-order correlations of multi-view features. However, they may suffer from two common problems: (1) the local structures and different importance of each view feature are often...
Paper Details
Title
Multi-view subspace clustering via simultaneously learning the representation tensor and affinity matrix
Published Date
Oct 1, 2020
Journal
Volume
106
Pages
107441 - 107441
Citation AnalysisPro
You’ll need to upgrade your plan to Pro
Looking to understand the true influence of a researcher’s work across journals & affiliations?
- Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
- Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
Notes
History