Error-controlled adaptive LR B-splines XIGA for assessment of fracture parameters in through-cracked Mindlin-Reissner plates

Published on Apr 15, 2020in Engineering Fracture Mechanics3.426
· DOI :10.1016/J.ENGFRACMECH.2020.106964
Tiantang Yu32
Estimated H-index: 32
(Hohai University),
Hongting Yuan2
Estimated H-index: 2
(Hohai University)
+ 2 AuthorsTinh Quoc Bui54
Estimated H-index: 54
(TITech: Tokyo Institute of Technology)
Sources
Abstract
Abstract This paper presents an error-controlled adaptive extended isogeometric analysis (XIGA) for assessment of fracture behavior for through-cracked Mindlin-Reissner plates. The locally refined (LR) B-splines that facilitate the local refinement are used as the basis functions for the approximations, while the kinematics of plates are described in terms of the Mindlin-Reissner plate theory. Appropriate enrichment functions for cracked plates are incorporated into the formulation to represent geometrically displacement discontinuities across the crack faces and singularity of the stress in the vicinity at the crack tips, thus cracks are modeled topologically independent of the computational mesh. Here we extend the Zienkiewicz-Zhu method-based error estimation to the XIGA formulation for cracks in Mindlin-Reissner plates such that non-smoothnesses and stress singularity are reflected accurately. We conduct the error-controlled adaptivity for local mesh refinement to enhance the accuracy and performance. Fracture parameters (i.e., mixed-mode intensity factors) are calculated through the contour interaction integral method in the context of Mindlin-Reissner plate theory. Several numerical examples for through-cracked plates are studied to show the accuracy and effectiveness of the proposed formulation in modeling fracture of cracked moderately thick plates.
📖 Papers frequently viewed together
8 Citations
2013
3 Authors (Guo Yuan Hui, ..., Chen YuMei)
2 Citations
References47
Newest
#1Jiming Gu (Hohai University)H-Index: 7
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 6 authors...
Abstract This paper is concerned with the numerical investigation of fracture mechanics parameters for cracked orthotropic composite structures by using an efficient computational approach. The adaptive extended isogeometric analysis (XIGA) based on locally refined (LR) B-splines is thus developed. This adaptive XIGA is enhanced by both signed-distance and orthotropic crack-tip enrichment functions to represent strong discontinuity and singularity induced by crack, respectively. In addition, to ...
13 CitationsSource
#1Satoyuki Tanaka (Hiroshima University)H-Index: 22
#2M.J. Dai (Hiroshima University)H-Index: 1
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 5 authors...
Abstract Several numerical examples for cracked folded structures are analyzed to investigate the mixed-mode stress resultant intensity factors (SRIFs). The kinematic formulations of structures are derived by the first order shear deformation plate theory. A Galerkin meshfree six degrees of freedom (6DOFs) flat shell is employed, in which the reproducing kernel (RK) is used as the meshfree interpolant. A diffraction method, visibility criterion and enriched basis are introduced to model the thro...
12 CitationsSource
#1Jiming Gu (Hohai University)H-Index: 7
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 6 authors...
Abstract This paper aims at investigating fracture behavior of single and multiple cracks in two-dimensional solids by an adaptive extended isogeometric analysis (XIGA) based on locally refined (LR) B-splines. The adaptive XIGA is capable of modeling cracks without considering the location of crack faces due to the local enrichment technique based on partition-of-unity concept. The XIGA approximation is locally enriched by Heaviside function and crack tip enrichment functions to capture the disc...
15 CitationsSource
#1H.S. Yang (BIT: Beijing Institute of Technology)H-Index: 3
#1H.S. Yang (BIT: Beijing Institute of Technology)H-Index: 2
Last. Chunying Dong (BIT: Beijing Institute of Technology)H-Index: 19
view all 2 authors...
Abstract In this paper, a posteriori error estimation and mesh adaptation approach for thin plate and shell structures of through-the-thickness crack is presented. This method uses the extended isogeometric analysis (XIGA) based on PHT-splines (Polynomial splines over Hierarchical T-meshes), which is abbreviated as XIGA-PHT. In XIGA-PHT, the isogeometric displacement approximation is locally enriched with enrichment functions, which efficiently capture the displacement discontinuity across the c...
12 CitationsSource
#1Xin LiH-Index: 61
#1Xin LiH-Index: 14
Last. Thomas W. Sederberg (BYU: Brigham Young University)H-Index: 49
view all 2 authors...
Abstract This paper introduces S-spline curves and surfaces. Local refinement of S-spline surfaces is much simpler to understand and to implement than T-spline refinement. Furthermore, no unwanted control points arise in S-spline refinement, unlike T-spline refinement. The refinement algorithm assures linear independence of blending functions. Thus, for isogeometric analysis, S-spline surfaces provide optimal degrees of freedom during adaptive local refinement. S-splines are compatible with NURB...
5 CitationsSource
#1Shuohui Yin (XTU: Xiangtan University)H-Index: 18
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Shuitao Gu (Chongqing University)H-Index: 3
view all 5 authors...
Abstract The main objective of this paper is to develop a novel multiscale approach for simulating static and stationary dynamic crack problems in two-dimensional elastic solids through an extended isogeometric analysis using the Non-Uniform Rational B-Splines (NURBS). This multiscale strategy consists of two techniques that the Nitsche’s method is applied for coupling different length-scales meshes on one hand, and on the other hand, a local enrichment technique is taken to describe the cracks ...
16 CitationsSource
#1Chen Xing (NUAA: Nanjing University of Aeronautics and Astronautics)H-Index: 1
#2Yongxiang Wang (Columbia University)H-Index: 13
Last. Haim Waisman (Columbia University)H-Index: 26
view all 3 authors...
Abstract We develop a novel fracture mechanics framework for cracked thin-walled structures based on the Mindlin-Reissner plate theory. The mixed interpolation of tensorial components (MITC) plate element within the extended finite element method (XFEM) is used for the discretization. High-order crack-tip enrichment functions are employed to resolve the linear elastic near field solutions and the stress intensity factors (SIFs) are extracted by using an analytical derivation of Irwin’s crack clo...
8 CitationsSource
#1Jiming Gu (Hohai University)H-Index: 7
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 6 authors...
Abstract In this paper, we present an effective computational approach that combines an adaptive extended isogeometric analysis (XIGA) method with locally refined (LR) B-splines and level set methods for modeling multiple inclusions in two-dimensional (2D) elasticity problems. The advantage of XIGA is to model inclusions without considering internal inclusion interfaces by additional functions. Multiple level set functions are used to represent the location of inclusion interfaces and to define ...
34 CitationsSource
#1Jiming Gu (Hohai University)H-Index: 7
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 5 authors...
Abstract We present an effective adaptive analysis procedure in terms of isogeometric analysis (IGA) based on locally refined (LR) B-splines for two-dimensional elasticity problems. One major advantage of the adopted LR B-splines over B-splines and non-uniform rational B-splines (NURBS) is the local refinement, which makes it highly suitable for adaptive analysis. The Zienkiewicz–Zhu estimation is used on error estimator based local refinement. The local refinement is implemented by the structur...
41 CitationsSource
#1S.K. Singh (IITR: Indian Institute of Technology Roorkee)H-Index: 6
#2Indra Vir Singh (IITR: Indian Institute of Technology Roorkee)H-Index: 31
Last. G. Bhardwaj (Thapar University)H-Index: 12
view all 4 authors...
Abstract In this work, an extended isogeometric analysis (XIGA) is used for the analysis of through-thickness crack in a homogeneous and isotropic plate. In isogeometric analysis (IGA), non-uniform rational B-splines (NURBS) are used as a basis function. The plate kinematics is modelled by Reddy’s higher-order shear deformation theory (HSDT). The C 1 continuity requirement of HSDT can be easily fulfilled by the NURBS basis functions. In order to obtain the plate fracture parameters (moment inten...
26 CitationsSource
Cited By9
Newest
Abstract The thermo-elastic analysis of thermally induced crack in functionally graded materials (FGMs) is performed using extended isogeometric analysis (XIGA). For the study, two types of cracks, i.e., adiabatic and isothermal, are considered in the FGM body. The suitable enrichment functions are employed to capture the discontinuity (i.e., displacements and temperature) along the crack face and singular fields around the crack tip. The material property gradation in FGM (composed of aluminum ...
Source
#1Hongting Yuan (Hohai University)H-Index: 2
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 3 authors...
Abstract The objective of this article is to simulate crack growth of complex Mindlin–Reissner plates by developing an adaptive multi-patch extended isogeometric analysis (XIGA). Nitsche’s method is used to treat continuity between multi-patches or the coupling of non-conforming meshes, exactly describing the geometry of complex plates. The computational meshes in XIGA are independent of the cracks by introducing some enrichment functions into the displacement approximation based on the partitio...
Source
#1Jiankang Zhang (Hohai University)H-Index: 4
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
This paper is devoted to numerical investigations on mechanical behavior of cracked composite functionally graded (FG) plates. We thus develop an efficient adaptive approach in terms of the extended isogeometric analysis (XIGA) enhanced by locally refined non-uniform rational B-spline (LR NURBS) for natural frequency and buckling analysis of cracked FG Mindlin–Reissner plates. In this setting, the crack geometries, which are described by the level sets, are independent of the computational mesh;...
Source
#1Hongjun Yu (HIT: Harbin Institute of Technology)H-Index: 15
#2Meinhard Kuna (Freiberg University of Mining and Technology)H-Index: 31
Abstract A critical overview of past research on the interaction integral (I-integral) method is presented. The I-integral is the two-state mutual energy release rate decided by a designable auxiliary field and the actual field. Due to the designability of the auxiliary field, the I-integral has been used extensively in extracting the individual stress intensity factors (SIFs) and the T-stress of a crack in single materials or at a bi-material interface. The practical implementation of the I-int...
Source
#1Thien Tich Truong (VNUHCM-UT: Ho Chi Minh City University of Technology)H-Index: 7
#2Vay Siu Lo (VNUHCM-UT: Ho Chi Minh City University of Technology)
view all 5 authors...
Abstract In this paper, an extended meshfree method approach is developed for numerical analysis of cracked plates using the First order Shear Deformation Theory - FSDT. Extrinsic enriched functions are employed to capture the jump in deflection and rotation fields, as well as the stress singularity in the vicinity of crack tip. Meshfree approximation of field variables is done by the Radial Point Interpolation Method, which possesses the desirable Kronecker-delta property, unlike many other mes...
Source
#1Jiankang Zhang (Hohai University)H-Index: 4
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 3 authors...
Abstract This work is devoted to numerical investigation for buckling of functionally graded plates (FGPs) with internal holes using an efficient adaptive isogeometric analysis (IGA). The locally refined (LR) B-splines, which possess the local refinement ability, are used as basis functions in IGA. Kinematics of plate structures are derived using the simple quasi-3D hyperbolic shear deformation theory (S-Q3HSDT), which has few unknowns, free from shear locking, and suitable for considering the s...
1 CitationsSource
#1Ming-Jyun Dai (Hiroshima University)H-Index: 1
#2Satoyuki Tanaka (Hiroshima University)H-Index: 22
Last. Erkan Oterkus (University of Strathclyde)H-Index: 26
view all 5 authors...
Abstract The present paper is devoted to numerical investigation on fracture parameters of cracked shells subjected to out-of-plane loading using ordinary state-based peridynamics (PD). The nonlocal deformation gradient and equivalent domain integral are introduced to evaluate fracture parameters. To reduce the surface effect and obtain more accurate results, the energy method and volume correction algorithm are considered. Meanwhile, the adaptive dynamic relaxation technique is employed to obta...
Source
#1M.T. Mohammadi Anaei (Shiraz University)
#2A. Khosravifard (Shiraz University)H-Index: 12
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 3 authors...
Abstract This paper presents a robust meshfree technique for computation of moment and stress intensity factors, and analysis of fatigue crack growth in cracked plates under the application of in- and out of-plane loads; a methodology for efficient and accurate computation of parameters of fracture mechanics problems is thus developed. Although having small computational labor and few complications of formulation, the proposed method has a high accuracy and convergence rate. By adding a few node...
Source
#1Weihua Fang (Ministry of Water Resources)H-Index: 3
#2Xin Chen (Hohai University)H-Index: 1
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract This paper is devoted to numerical investigation of holes/voids effects on crack growth in solids using a locally refined (LR) B-splines extended isogeometric analysis (XIGA). We particularly focus our attention on crack-hole interaction analysis. Special enrichment functions captured discontinuity and singularity are used, by which the computational mesh are thus independent of both cracks and holes, eliminating re-meshing when modeling crack growth. Geometries of arbitrary shaped crac...
Source
#1Tiantang Yu (Hohai University)H-Index: 32
#2Bing Chen (Hohai University)H-Index: 1
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract This paper presents an isogeometric analysis with adaptivity using locally refined B-splines (LR B-splines) for steady-state heat conduction simulations in solids. Within this framework, the LR B-splines, which have an efficient and simple local refinement algorithm, are used to represent the geometry, and are also employed for spatial discretization, thus providing a seamless interaction between the CAD models and the numerical analysis. A Zienkiewicz-Zhu a posteriori error estimator i...
5 CitationsSource