Original paper
Modal decomposition based ensemble learning for ground source heat pump systems load forecasting
Abstract
This study presents a case study of office buildings using modal decomposition based ensemble learning method to forecast energy consumption of ground source heat pump systems (GSHP). Conventional machine learning methods have uncertainty in practical application as there are lots of stochastic terms in the structure of the algorithm. Therefore, ensemble learning models are proposed to ameliorate the problem. In this paper, the prediction...
Paper Details
Title
Modal decomposition based ensemble learning for ground source heat pump systems load forecasting
Published Date
Apr 15, 2019
Journal
Volume
194
Pages
62 - 74
TrendsPro
You’ll need to upgrade your plan to Pro
Looking to understand a paper’s academic impact over time?
- Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
- Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
You’ll need to upgrade your plan to Pro
Looking to understand the true influence of a researcher’s work across journals & affiliations?
- Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
- Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
Notes
History