Search everything
Home
Research Intelligence
Expert Finder
Scinapse Trends
Paper Search
Journal Search
Collections
Favorites
History
Submit Feedback
doi.org/10.1016/j.jcp.2019.03.039
Original paper
Data-driven polynomial chaos expansion for machine learning regression
Emiliano Torre
8
,
Stefano Marelli
22
,
...,
Bruno Sudret
42
View all 4 authors
Journal of Computational Physics
3.80
Volume: 388, Pages: 601 - 623
Published
: Jul 1, 2019
103
Citations
Sources
Cite
Basic Info
Analytics
References
Citations
Paper Fields
Geodesy
Algorithm
Benchmark (surveying)
Pure mathematics
Uncertainty quantification
Statistics
Support vector machine
Field (mathematics)
Probabilistic logic
Computer science
Mathematical optimization
Polynomial
Regression analysis
Polynomial chaos
Regression
Metamodeling
Mathematics
Geography
Pointwise
Function approximation
Mathematical analysis
Artificial intelligence
Monte Carlo method
Programming language
Artificial neural network
Polynomial regression
Machine learning
Paper Details
Title
Data-driven polynomial chaos expansion for machine learning regression
DOI
doi.org/10.1016/j.jcp.2019.03.039
Published Date
Jul 1, 2019
Journal
Journal of Computational Physics
Volume
388
Pages
601 - 623
Notes
History
View all history