This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.
Original paper

A Multimodal Deep Learning Method for Android Malware Detection Using Various Features

Volume: 14, Issue: 3, Pages: 773 - 788
Published: Aug 21, 2018
Abstract
With the widespread use of smartphones, the number of malware has been increasing exponentially. Among smart devices, android devices are the most targeted devices by malware because of their high popularity. This paper proposes a novel framework for android malware detection. Our framework uses various kinds of features to reflect the properties of android applications from various aspects, and the features are refined using our existence-based...
Paper Details
Title
A Multimodal Deep Learning Method for Android Malware Detection Using Various Features
Published Date
Aug 21, 2018
Volume
14
Issue
3
Pages
773 - 788
TrendsPro
  • Scinapse’s Citation Trends graph enables the impact assessment of papers in adjacent fields.
  • Assess paper quality within the same journal or volume, irrespective of the year or field, and track the changes in the attention a paper received over time.
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
© 2025 Pluto Labs All rights reserved.
Step 1. Scroll down for details & analytics related to the paper.
Discover a range of citation analytics, paper references, a list of cited papers, and more.