Search everything
Home
Research Intelligence
Expert Finder
Scinapse Trends
Paper Search
Journal Search
Collections
Favorites
History
Submit Feedback
doi.org/10.1016/j.procs.2018.01.054
Grid Path Planning with Deep Reinforcement Learning: Preliminary Results
Aleksandr I. Panov
11
,
Konstantin Yakovlev
11
,
Roman Suvorov
5
View all 3 authors
Procedia Computer Science
Volume: 123, Pages: 347 - 353
Published
: Jan 1, 2018
120
Citations
Source
Cite
Basic Info
Analytics
References
Citations
Paper Fields
Mathematics
Reinforcement learning
Hyperparameter optimization
Support vector machine
Machine learning
Heuristic
Political science
Artificial intelligence
Economics
Grid
Programming language
Law
Problem statement
Geometry
Statement (logic)
Path (computing)
Computer science
Management science
Robotics
Artificial neural network
Motion planning
Robot
Paper Details
Title
Grid Path Planning with Deep Reinforcement Learning: Preliminary Results
DOI
doi.org/10.1016/j.procs.2018.01.054
Published Date
Jan 1, 2018
Journal
Procedia Computer Science
Volume
123
Pages
347 - 353
Notes
History
View all history