Biomimetic Tendrils by Four Dimensional Printing Bimorph Springs with Torsion and Contraction Properties Based on Bio‐Compatible Graphene/Silk Fibroin and Poly(3‐Hydroxybutyrate‐ co ‐3‐Hydroxyvalerate)

Volume: 31, Issue: 52, Pages: 2105665 - 2105665
Published: Sep 24, 2021
Abstract
Taking inspiration from plant tendril geometry, in this study, 4D bimorph coiled structures with an internal core of graphene nanoplatelets-modified regenerated silk and an external shell of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) are fabricated by 4D printing. Finite element simulations and experimental tests demonstrate that integrating these biomaterials with different coefficients of thermal expansion results in the temperature induced...
Paper Details
Title
Biomimetic Tendrils by Four Dimensional Printing Bimorph Springs with Torsion and Contraction Properties Based on Bio‐Compatible Graphene/Silk Fibroin and Poly(3‐Hydroxybutyrate‐ co ‐3‐Hydroxyvalerate)
Published Date
Sep 24, 2021
Volume
31
Issue
52
Pages
2105665 - 2105665
Citation AnalysisPro
  • Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
  • Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.