Dosimetric feasibility of brain stereotactic radiosurgery with a 0.35 T MRI-guided linac and comparison vs a C-arm-mounted linac.

Published on Nov 1, 2020in Medical Physics4.071
· DOI :10.1002/MP.14503
Jordan M. Slagowski3
Estimated H-index: 3
(U of C: University of Chicago),
Gage Redler11
Estimated H-index: 11
+ 11 AuthorsBulent Aydogan21
Estimated H-index: 21
(U of C: University of Chicago)
Sources
Abstract
Purpose MRI is the gold-standard imaging modality for brain tumor diagnosis and delineation. The purpose of this work was to investigate the feasibility of performing brain stereotactic radiosurgery (SRS) with a 0.35 T MRI-guided linear accelerator (MRL) equipped with a double-focused multileaf collimator (MLC). Dosimetric comparisons were made vs a conventional C-arm-mounted linac with a high-definition MLC. Methods The quality of MRL single-isocenter brain SRS treatment plans was evaluated as a function of target size for a series of spherical targets with diameters from 0.6 cm to 2.5 cm in an anthropomorphic head phantom and six brain metastases (max linear dimension = 0.7-1.9 cm) previously treated at our clinic on a conventional linac. Each target was prescribed 20 Gy to 99% of the target volume. Step-and-shoot IMRT plans were generated for the MRL using 11 static coplanar beams equally spaced over 360° about an isocenter placed at the center of the target. Couch and collimator angles are fixed for the MRL. Two MRL planning strategies (VR1 and VR2) were investigated. VR1 minimized the 12 Gy isodose volume while constraining the maximum point dose to be within ±1 Gy of 25 Gy which corresponded to normalization to an 80% isodose volume. VR2 minimized the 12 Gy isodose volume without the maximum dose constraint. For the conventional linac, the TB1 method followed the same strategy as VR1 while TB2 used five noncoplanar dynamic conformal arcs. Plan quality was evaluated in terms of conformity index (CI), conformity/gradient index (CGI), homogeneity index (HI), and volume of normal brain receiving ≥12 Gy (V12Gy ). Quality assurance measurements were performed with Gafchromic EBT-XD film following an absolute dose calibration protocol. Results For the phantom study, the CI of MRL plans was not significantly different compared to a conventional linac (P > 0.05). The use of dynamic conformal arcs and noncoplanar beams with a conventional linac spared significantly more normal brain (P = 0.027) and maximized the CGI, as expected. The mean CGI was 95.9 ± 4.5 for TB2 vs 86.6 ± 3.7 (VR1), 88.2 ± 4.8 (VR2), and 88.5 ± 5.9 (TB1). Each method satisfied a normal brain V12Gy ≤ 10.0 cm3 planning goal for targets with diameter ≤2.25 cm. The mean V12Gy was 3.1 cm3 for TB2 vs 5.5 cm3 , 5.0 cm3 and 4.3 cm3 , for VR1, VR2, and TB1, respectively. For a 2.5-cm diameter target, only TB2 met the V12Gy planning objective. The MRL clinical brain plans were deemed acceptable for patient treatment. The normal brain V12Gy was ≤6.0 cm3 for all clinical targets (maximum target volume = 3.51 cm3 ). CI and CGI ranged from 1.12-1.65 and 81.2-88.3, respectively. Gamma analysis pass rates (3%/1mm criteria) exceeded 97.6% for six clinical targets planned and delivered on the MRL. The mean measured vs computed absolute dose difference was -0.1%. Conclusions The MRL system can produce clinically acceptable brain SRS plans for spherical lesions with diameter ≤2.25 cm. Large lesions (>2.25 cm) should be treated with a linac capable of delivering noncoplanar beams.
📖 Papers frequently viewed together
2 Authors (P Dong, L. Ma)
References42
Newest
#1Jordan M. Slagowski (University of Texas MD Anderson Cancer Center)H-Index: 3
#2Yao Ding (University of Texas MD Anderson Cancer Center)H-Index: 2
Last. Jihong Wang (University of Texas MD Anderson Cancer Center)H-Index: 4
view all 11 authors...
Magnetic resonance imaging (MRI) offers outstanding soft tissue contrast that may reduce uncertainties in target and organ-at-risk delineation and enable online adaptive image-guided treatment. Spatial distortions resulting from non-linearities in the gradient fields and non-uniformity in the main magnetic field must be accounted for across the imaging field-of-view to prevent systematic errors during treatment delivery. This work presents a modular phantom and software application to characteri...
Source
#1Arash Darafsheh (WashU: Washington University in St. Louis)H-Index: 19
#2Yao Hao (WashU: Washington University in St. Louis)H-Index: 4
Last. Rao Khan (WashU: Washington University in St. Louis)H-Index: 12
view all 6 authors...
PURPOSE To investigate the inconsistency of recent literature on the effect of magnetic field on the response of radiochromic films, we studied the influence of 0.35 T magnetic field on dosimetric response of EBT3 and EBT-XD GafchromicTM films. METHODS Two different models of radiochromic films, EBT3 and EBT-XD, were investigated. Pieces of films samples from two different batches for each model were irradiated at different dose levels ranging from 1 Gy to 20 Gy using 6 MV flattening filter free...
Source
#1Gage RedlerH-Index: 11
#2Tynan Stevens (Dal: Dalhousie University)H-Index: 1
Last. Bulent Aydogan (U of C: University of Chicago)H-Index: 21
view all 8 authors...
Introduction: Spine stereotactic body radiation therapy (SBRT) achieves favorable outcomes compared to conventional radiotherapy doses/fractionation. The spinal cord is the principal dose-limiting organ-at-risk (OAR), and safe treatment requires precise immobilization/localization. Therefore, image guidance is paramount to successful spine SBRT. Conventional X-ray imaging and alignment to surrogate bony anatomy may be inadequate, whereas magnetic resonance imaging (MRI) directly visualizes the d...
Source
#1S DorschH-Index: 1
#2P. Mann (DKFZ: German Cancer Research Center)H-Index: 10
Last. Christian P. Karger (DKFZ: German Cancer Research Center)H-Index: 35
view all 7 authors...
: For hybrid devices combining magnetic resonance (MR) imaging and a linac for radiation treatment, the isocenter accuracy as well as image distortions have to be checked. This study presents a new phantom to investigate MR-Linacs in a single measurement in terms of (i) isocentricity of the irradiation and (ii) alignment of the irradiation and imaging isocenter relative to each other using polymer dosimetry gel as well as (iii) 3-dimensional (3D) geometric MR image distortions. The evaluation of...
Source
#1H. Michael Gach (WashU: Washington University in St. Louis)H-Index: 16
#2A Curcuru (WashU: Washington University in St. Louis)H-Index: 8
Last. Olga Green (WashU: Washington University in St. Louis)H-Index: 18
view all 7 authors...
PURPOSE: To present lessons learned from magnetic resonance imaging (MRI) quality control (QC) tests for low-field MRI-guided radiation therapy (MR-IGRT) systems. METHODS: MRI QC programs were established for low-field MRI-60 Co and MRI-Linac systems. A retrospective analysis of MRI subsystem performance covered system commissioning, operations, maintenance, and quality control. Performance issues were classified into three groups: (a) Image noise and artifact; (b) Magnetic field homogeneity and...
Source
#1Poonam Yadav (UW: University of Wisconsin-Madison)H-Index: 9
#2Hima Bindu Musunuru (UW: University of Wisconsin-Madison)H-Index: 12
Last. Andrew M. Baschnagel (UW: University of Wisconsin-Madison)H-Index: 21
view all 6 authors...
Background Stereotactic body radiation therapy (SBRT) given in 1-5 fractions is an effective treatment for vertebral metastases. Real-time magnetic resonance-guided radiotherapy (MRgRT) improves soft tissue contrast, which translates into accurate delivery of spine SBRT. Here we report on clinical implementation of MRgRT for spine SBRT, the quality of MRgRT plans compared to TrueBeam based volumetric modulated arc therapy (VMAT) plans in the treatment of spine metastases and benefits of MRgRT MR...
Source
#8Xiaofeng Yang (Emory University)H-Index: 29
Abstract Magnetic resonance imaging (MRI)-only radiotherapy treatment planning is attractive since MRI provides superior soft tissue contrast without ionizing radiation compared with computed tomography (CT). However, it requires the generation of pseudo CT from MRI images for patient setup and dose calculation. Our machine-learning-based method to generate pseudo CT images has been shown to provide pseudo CT images with excellent image quality, while its dose calculation accuracy remains an ope...
Source
Abstract The integration of magnetic resonance (MR) imaging and linear accelerators into hybrid treatment systems has made MR-guided radiation therapy a clinical reality. This work summarizes the technical design of a 0.35 T MR-Linac and corresponding clinical concepts. The system facilitates 3D-conformal as well as IMRT treatments with 6MV photons. Daily MR imaging provides superior soft-tissue contrast for patient setup and also enables on-table adaption of treatment plans, which is fully inte...
Source
#7J. Debus (University Hospital Heidelberg)H-Index: 63
Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-li...
Source
#1Jaymin Jhaveri (Emory University)H-Index: 10
#2Mudit Chowdhary (Rush University Medical Center)H-Index: 15
Last. Kirtesh R. Patel (Yale University)H-Index: 12
view all 16 authors...
OBJECTIVEThe optimal margin size in postoperative stereotactic radiosurgery (SRS) for brain metastases is unknown. Herein, the authors investigated the effect of SRS planning target volume (PTV) margin on local recurrence and symptomatic radiation necrosis postoperatively.METHODSRecords of patients who received postoperative LINAC-based SRS for brain metastases between 2006 and 2016 were reviewed and stratified based on PTV margin size (1.0 or > 1.0 mm). Patients were treated using frameless and...
Source
Cited By1
Newest
The main focus of the recommended spatial accuracy tests for the multi-leaf collimators (MLC) is calibration of the leaf position along the movement direction and overall alignment to the radiation isocenter. No explicit attention was typically paid to the alignment of the leaves from the opposing banks in the direction orthogonal to movement. This paper is a case study demonstrating that verification of such alignment at the time of acceptance testing is prudent. The original standard MLC (SMLC...
Source
This website uses cookies.
We use cookies to improve your online experience. By continuing to use our website we assume you agree to the placement of these cookies.
To learn more, you can find in our Privacy Policy.