# Generator of Pythagorean triples and Je\acute{s}anowicz conjecture

Abstract

Let a,b,cbe relatively prime positive integers such that a^2+b^2=c^2, 2|b In this paper, we show that Pythagorean triples (a, b,c)must satisfy abc\equiv{0\; (\mod3\cdot{4}\cdot{5}})and c\neq{0\; (\mod{3}}) and we also prove that for (a,b,c)\in\{(a,b,c)|a\equiv{0\;(\mod{3}}),b\equiv{0\;(\mod{4}}),c\equiv{0\; (\mod{5}})\}\bigcup\{(a,b,c)|b\equiv{0\;(\mod{12}}),c\equiv{0\;(\mod{5}})\} the only solution of $a^x+b^y=c^z\qquad{z},y,z\in{N} in positive integers is x, y, z) = (2, 2,2)$.