Original paper
Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus
Abstract
This paper proposes artificial neural network (ANN) models to forecast the seasonal hourly electricity consumption for three areas of a university campus, Japan. A total of six parameters including day of week, hour of day, hourly dry-bulb temperature, hourly relative humidity, hourly global irradiance, and previous hourly electricity consumption are used as input variables. The ANN models are developed to predict the future seasonal hourly...
Paper Details
Title
Predictive artificial neural network models to forecast the seasonal hourly electricity consumption for a University Campus
Published Date
Oct 1, 2018
Volume
42
Pages
82 - 92
Citation AnalysisPro
You’ll need to upgrade your plan to Pro
Looking to understand the true influence of a researcher’s work across journals & affiliations?
- Scinapse’s Top 10 Citation Journals & Affiliations graph reveals the quality and authenticity of citations received by a paper.
- Discover whether citations have been inflated due to self-citations, or if citations include institutional bias.
Notes
History