# Jammed Spin Liquid in the Bond-Disordered Kagome Antiferromagnet.

Abstract

We study a class of disordered continuous classical spin systems including the kagome Heisenberg magnet. While each term in its local Hamiltonian can be independently minimised, we find {\it discrete} degenerate ground states whose number grows exponentially with system size. These states do not exhibit zero-energy `excitations' characteristic of highly frustrated magnets but instead are local minima of the energy landscape, albeit with an anomalously soft excitation spectrum. This represents a spin liquid version of the phenomenon of jamming familiar from granular media and structural glasses. Correlations of this jammed spin liquid, which upon increasing the disorder strength gives way to a conventional spin glass, may be algebraic (Coulomb-type) or exponential.

Figures & Tables