Tiantang Yu
Hohai University
AlgorithmMathematical analysisFinite element methodPlate theoryBoundary value problemEstimatorMaterials scienceVibrationExtended finite element methodIsogeometric analysisApplied mathematicsMaterial propertiesMathematicsComputer scienceFracture (geology)Rate of convergenceBasis functionStructural engineeringNatural frequencyBuckling
80Publications
32H-index
2,380Citations
Publications 83
Newest
#1Shuohui Yin (Hohai University)H-Index: 18
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Sohichi Hirose (TITech: Tokyo Institute of Technology)H-Index: 15
view all 5 authors...
Abstract Numerical modeling with treatment of trimmed objects such as internal cutouts in terms of NURBS-based isogeometric analysis presents several challenges, primarily due to the tensor product of the NURBS basis functions. In this paper we develop a new simple and effective isogeometric analysis for modeling buckling and free vibration problems of thin laminated composite plates with cutouts. We adopt the classical plate theory for the present formulation. The new approach can nicely overco...
56 CitationsSource
#1Tiantang Yu (Hohai University)H-Index: 32
#2Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
Last. Sohichi Hirose (TITech: Tokyo Institute of Technology)H-Index: 15
view all 5 authors...
Interfacial dynamic impermeable cracks analysis of dissimilar piezoelectric solids under coupled electromechanical impact loadings by the extended finite element method (X-FEM) is presented. The dynamic X-FEM approach recently developed by the authors is further extended to analyze transient responses of interfacial impermeable cracks in dissimilar piezoelectric structures. The mechanical displacements and electrical potential are approximated by appropriate enrichment functions that are not onl...
62 CitationsSource
#1Peng Liu (Hunan University)H-Index: 12
#2Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
Last. Sohichi Hirose (TITech: Tokyo Institute of Technology)H-Index: 15
view all 7 authors...
Abstract We present new numerical results in buckling failure analysis of cracked composite functionally graded plates subjected to uniaxial and biaxial compression loads. An accurate extended 3-node triangular plate element in the context of the extended finite element method (XFEM) is developed, integrating the discrete shear gap method (DSG) to eliminate shear-locking. The plate kinematics is based on the Reissner–Mindlin theory, and material properties are assumed to vary through thickness d...
67 CitationsSource
#1Luyang Shi (Hohai University)H-Index: 1
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 3 authors...
A numerical model based on the extended finite element method (XFEM) is developed to serve this purpose. The present approach involves several features of an effective numerical tool in modelling hydraulic fracturing: the generalized shape functions are used in a cluster of nodes around the cracks, whereas the conventional finite element shape functionsare applied outside the cracks; the ramp function is introduced to remove the blending elements in the XFEM setting; and the contact conditions b...
24 CitationsSource
#1Shuohui Yin (Hohai University)H-Index: 18
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Minh N. Nguyen (RUB: Ruhr University Bochum)H-Index: 29
view all 4 authors...
Purpose – The purpose of this paper is to propose an efficient and accurate numerical model that employs isogeometric analysis (IGA) for the geometrically nonlinear analysis of functionally graded plates (FGPs). This model is utilized to investigate the effects of boundary conditions, gradient index, and geometric shape on the nonlinear responses of FGPs. Design/methodology/approach – A geometrically nonlinear analysis of thin and moderately thick functionally graded ceramic-metal plates based o...
38 CitationsSource
#1Shuohui Yin (Hohai University)H-Index: 18
#2Jack Hale (University of Luxembourg)H-Index: 9
Last. Stéphane Bordas (Cardiff University)H-Index: 65
view all 5 authors...
An effective, simple, robust and locking-free plate formulation is proposed to analyze the static bending, buckling, and free vibration of homogeneous and functionally graded plates. The simple first-order shear deformation theory (S-FSDT), which was recently presented in Thai and Choi (2013) [11], is naturally free from shear-locking and captures the physics of the shear-deformation effect present in the original FSDT, whilst also being less computationally expensive due to having fewer unknown...
143 CitationsSource
#1Minh N. Nguyen (RUB: Ruhr University Bochum)H-Index: 29
#2Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
Last. Sohichi Hirose (TITech: Tokyo Institute of Technology)H-Index: 15
view all 4 authors...
Abstract Unsaturated flow problems in porous media often described by Richards’ equation are of great importance in many engineering applications. In this contribution, we propose a new numerical flow approach based on isogeometric analysis (IGA) for modeling the unsaturated flow problems. The non-uniform rational B-spline (NURBS) basis is utilized for spatial discretization whereas the stable implicit backward Euler method for time discretization. The nonlinear Richards’ equation is iteratively...
31 CitationsSource
#1Ang Li (Hohai University)H-Index: 4
#2Guojian Shao (Hohai University)H-Index: 4
Last. Sheng-yong Ding (Hohai University)H-Index: 3
view all 5 authors...
This paper presents a digital image processing (DIP) based finite difference method (FDM) and makes the first attempt to apply the new method to the failure process of stratified rocks from Chinese Jinping underground carves. In the method, the two-dimensional (2D) inhomogeneity and mesostructures of rock materials are first identified with the DIP technique. And then the binarization image information is used to generate the finite difference grids. Finally, the failure process of stratified ro...
3 CitationsSource
#1Peng Liu (Hohai University)H-Index: 12
#2Tiantang Yu (Hohai University)H-Index: 32
Last. C.W. Lim (CityU: City University of Hong Kong)H-Index: 63
view all 6 authors...
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used f...
88 CitationsSource
#1Peng Liu (Hohai University)H-Index: 12
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Chuanzeng Zhang (University of Siegen)H-Index: 38
view all 4 authors...
Abstract We study transient dynamic fracture behaviors of stationary cracked functionally graded piezoelectric materials (FGPMs) under impact loading by using the extended finite element method (X-FEM). The material properties are assumed to be varied exponentially along one direction. A dynamic X-FEM model associated with the stable implicit integration technique is developed to serve that purpose, while the contour interaction integral technique is employed to accurately evaluate the relevant ...
61 CitationsSource