Tiantang Yu
Hohai University
AlgorithmMathematical analysisFinite element methodPlate theoryBoundary value problemEstimatorMaterials scienceVibrationExtended finite element methodIsogeometric analysisApplied mathematicsMaterial propertiesMathematicsComputer scienceFracture (geology)Rate of convergenceBasis functionStructural engineeringNatural frequencyBuckling
80Publications
32H-index
2,380Citations
Publications 83
Newest
#1Huifeng Hu (Hohai University)H-Index: 3
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract Studies on functionally graded (FG) curved microbeam structures are rather rare in the literature, and we thus present an effective computational approach on the basic combination of isogeometric analysis (IGA) and modified couple stress theory (MCST) for mechanical behavior analysis of such FG curved microbeams. The proposed method can cope with simultaneous complexities in material properties and geometries of the FG curved microbeams. The material properties of microbeams vary contin...
9 CitationsSource
#1Zi Han (Hohai University)H-Index: 1
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract We present in this paper a novel and efficient computational approach in terms of triangular extended stochastic finite element method (T-XSFEM) for simulation of random void problems. The present T-XSFEM is further enhanced by local mesh refinement with the aid of variable-node elements to couple/link different mesh-scales, increasing the efficiency of the developed approach and saving the computational cost. The degrees of freedom are approximated with a truncated generalized polynomi...
6 CitationsSource
#1Weihua Fang (Ministry of Water Resources)H-Index: 3
#2Xin Chen (Hohai University)H-Index: 1
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract This paper is devoted to numerical investigation of holes/voids effects on crack growth in solids using a locally refined (LR) B-splines extended isogeometric analysis (XIGA). We particularly focus our attention on crack-hole interaction analysis. Special enrichment functions captured discontinuity and singularity are used, by which the computational mesh are thus independent of both cracks and holes, eliminating re-meshing when modeling crack growth. Geometries of arbitrary shaped crac...
3 CitationsSource
#1Tiantang Yu (Hohai University)H-Index: 32
#2Bing Chen (Hohai University)H-Index: 1
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 4 authors...
Abstract This paper presents an isogeometric analysis with adaptivity using locally refined B-splines (LR B-splines) for steady-state heat conduction simulations in solids. Within this framework, the LR B-splines, which have an efficient and simple local refinement algorithm, are used to represent the geometry, and are also employed for spatial discretization, thus providing a seamless interaction between the CAD models and the numerical analysis. A Zienkiewicz-Zhu a posteriori error estimator i...
6 CitationsSource
#1Keke Li (Hohai University)H-Index: 1
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 3 authors...
Abstract Limit analysis, without the complicated elasto-plastic computation, is an efficient method for estimating safety load of engineering structures. This paper develops a novel computational approach by integrating second-order cone programming (SOCP) into adaptive extended isogemetric elements (XIGA) for upper-bound limit analysis of cracked structures. The advantage of XIGA is to model cracks without considering the location of crack faces by introducing enrichment functions. The local re...
3 CitationsSource
#1Chao Wang (Anhui University of Technology)H-Index: 7
#2Jin Ming Koh (SUTD: Singapore University of Technology and Design)H-Index: 12
Last. Kang Hao Cheong (SUTD: Singapore University of Technology and Design)H-Index: 17
view all 5 authors...
Abstract In the design of functionally graded materials, bi-directional design offers greater design freedom than the typical single-direction approach. This paper studies the shape and size design of variable-thickness bi-directional functionally graded plates (2D-FGPs) with multi-objective optimization. A method integrating generalized iso-geometrical analysis (GIGA) and an improved multi-objective particle swarm optimization algorithm (IMOPSO) is proposed, with numerous technical advantages. ...
16 CitationsSource
#1Chunping Ma (OSU: Ohio State University)H-Index: 6
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 5 authors...
Abstract We present an efficient computational approach composed of forward and inverse analyses that can neatly capture multiple flaw clusters with high accuracy yet low computational effort. The inverse analysis consists of three continuous steps with distinct targets. Firstly, a combination of improved discrete artificial bee colony (IDABC) algorithm and hierarchical clustering analysis (HCA) is applied to seize sub-domains that contain flaw clusters with a conservative number of sensors. Sec...
8 CitationsSource
#1Ming-Jyun Dai (Hiroshima University)H-Index: 1
#2Satoyuki Tanaka (Hiroshima University)H-Index: 22
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 5 authors...
Abstract A meshfree approach for analyzing the fracture mechanics parameters in cracked curved shells is presented. The reproducing kernel (RK) meshfree method and mapping technique are employed to approximate cracked curvilinear surfaces and field variables. In order to model the crack segment, the meshfree discretization techniques are used. The stabilized conforming nodal integration (SCNI) and sub-domain stabilized conforming integration (SSCI) techniques are adopted to accurately integrate ...
8 CitationsSource
#1Jiming Gu (Hohai University)H-Index: 7
#2Tiantang Yu (Hohai University)H-Index: 32
Last. Tinh Quoc Bui (TITech: Tokyo Institute of Technology)H-Index: 54
view all 6 authors...
Abstract Reliable prediction and thorough understanding of crack growth in engineering materials and structures are of challenging problems, but scientific and technical community has been continuously pursuing an efficient numerical approach to crack propagation simulation. We present in this paper a significant extension and development of the adaptive extended isogeometric analysis (XIGA) based on LR B-splines (locally refined B-splines), which facilitates the local refinement, for accurately...
11 CitationsSource
#1Shuohui Yin (XTU: Xiangtan University)H-Index: 18
#2Yang Deng (XTU: Xiangtan University)H-Index: 2
Last. Shuitao Gu (Chongqing University)H-Index: 3
view all 5 authors...
A new isogeometric Timoshenko beam model is developed using a modified couple stress theory (MCST) and a surface elasticity theory. The MCST is wildly used to capture microstructure effects that in...
7 CitationsSource